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The disturbance produced by an oscillatory pressure distribution 
in uniform translation on the surface of a liquid 
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SUMMARY 
Expressions are derived for the two-dimensional surface elevation resulting from an oscillatory translating 
surface pressure distribution. The surface elevation is given as the sum of four terms, each of which is 
associated with an improper integral having a simple pole singularity. Results are presented for the delta 
function and the uniform spatial pressure distribution. 

The mean work done on the fluid per unit time by the delta function pressure distribution is given. 
Numerical results are presented for the surface elevation resulting from the uniform pressure distribution. 

2. Introduction 

The current development of air cushion supported marine vehicles has kindled a renewed 
interest in the analysis of water waves produced by surface pressure distributions. Initially 
the primary application was for the prediction of wavemaking drag produced by translating 
pressure distributions having various planform shapes. More recently, unsteady problems 
have been investigated in order to obtain insight into various aspects of the dynamic per- 
formance of air cushion supported vehicles [1], [2]. 

Stoker, [3] Kaplan, [4] and Wu [5] treated the two-dimensional problem for a harmonic, 
uniformly translating delta function pressure distribution. Kaplan obtained expressions for 
the surface elevation in the far field while Wu obtained asymptotic results for the velocity 
potential and surface elevation in both the near and far field. Stoker discussed the qualita- 
tive behavior of  the solution, and obtained results for the near and far field for the zero 
speed case. 

Debnath and Rosenblatt [6] treated the two-dimensional finite depth problem using gen- 
eralized function theory to obtain an asymptotic solution. The same technique has been ap- 
plied recently by Pramanik [7] to the two-layer fluid. 

Lighthill [8] analyzed the qualitative nature of the three-dimsional wave pattern pro- 
duced by an unsteady translating pressure distribution. More recently, Tayler and Van den 
Driessche [9] used ray theory to obtain qualitative results for the three-dimensional wave 
pattern produced by a periodic translating submerged source. The problem treated in this 
paper is closely related to the translating submerged source of pulsating strength. A useful 
survey and discussion of the literature on the pulsating source has been compiled by 
Wehausen and Laitone [10]. 

This paper presents, for the first time, an entirely analytical result for the two-dimensional 
surface elevation that is valid for the entire field. Results are given for both a delta function 
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and a uniform pressure distribution. It was possible to obtain an analytical solution to the 
problem by directly evaluating improper integrals arising from a Fourier spatial transform. 
The integrals were evaluated by a careful examination of the singularities, algebraic manip- 
ulation and proper choice of contour of integration. The results are given in terms of well- 
known transcendental functions. The results will be extended to three dimensions in the 
future, but a detailed analysis of the two-dimensional dispersion was considered necessary 
to clarify the fundamental nature of the wave field, The methodology used is equally appli- 
cable to the three-dimensional problem. 

The two-dimensional problem is treated here for an irrotational, incompressible inviscid 
fluid of infinite depth using linearized potential theory. The formulation of the problem 
generally follows Doctors' three dimensional analysis [2] and also parallels Wu's [5] two- 
dimensional analysis, The major departure from Doctors and Wu comes in the evaluation 
of the integral forms by contour integration and the application of Cauchy's theorem. 

2. Derivation of  velocity potential and surface elevation 

The coordinate system and notation are shown in Fig. 1. The surface pressure distribution 
p(x ,  t) is translating to the right with a speed c relative to the fixed coordinate system. The 
surface elevation is denoted as z(x,  t). The fluid is considered to be irrotational and incom- 
pressible so that a velocity potential ~(x, z, t) exists. The potential obeys the following re- 
lation: 

Az~(X, z, t) = 0, (1) 

where A2 is the two-dimensional Laplacian operator. The fluid velocity is the gradient of 
the potential, or 

u = ~x, w = 0~, (2) 

where u is the x component and w is the z component of the velocity, and the subscripts x 
and z represent partial differentation in each respective direction. 

The kinematic free surface boundary condition is written in linearized form as follows: 

(~)~=o + eZ~ - Z t = O. (3) 

The linearized dynamic boundary condition is: 

(~,-c~.  + ~)~:o = -  (P  + az), 

Z Z 

0 :~Xl 

l~ ct J 
Figure 1. Coordinate system and notation for the translating oscillatory surface pressure distribution. 
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where # is the Rayleigh viscosity. The temporary  introduct ion of  Rayleigh viscosity proves 

to be useful in the interpretation o f  improper  integrals derived later in the paper.* The com- 

bined free surface boundary  condit ion may be written as 

- 1  
[~. - 2 c ~ ,  + c2~xx  + O4,z + ~ ( ~ ,  - c~x) ]z=o  - (p ,  - cp~). (5) 

P 

One may  also write the following condit ion for the fluid o f  infinite depth:  

(b~ = 0, z ~ - oo. (6) 

Since the case of  harmonic  time dependence is being treated, one may write for  the pressure 

p(x, t) = p(x) e-i~t, (7) 

where cr is the radian frequency. 

It  is convenient  to solve for the response due to a delta funct ion pressure distribution 

p(x) = 6(x). The resulting surface elevation will be denoted ~(x, t) and the velocity poten- 

tial qS(x, z, t). The response to an arbi t rary spatial pressure distribution p(x) may be ob- 

tained f rom ~ and q5 using superposit ion integrals as follows: 

,(x,z,t)=f]cO p(~)~ ) (x -~ , z , t )d~  

and (8) 

Z ( x , t ) = I  ~_~p(~)~(x-~, t )d~.  

One may formally express the velocity potential and surface elevation in a Fourier  inte- 

gral fo rm:  

(9(x, z, t) = ~ f f  O'(k, z, t)eik~dk (9) 
- -CO 

and 

((x, t) = ~ ~'(k, t)e~kXdk, (10) 
- - c O  

where qS' and ( '  are the t ransformed potential and surface elevation. F rom (1) and (6), one 

sees that the t ransformed potential  may be written 

O' = A(k, t)e Iklz. (11) 

* The ficticious Rayleigh viscosity is frequently used as a mathematical artifice to shift pole singularities 
off the real axis. This enables one to properly interpret the integration path after the ficticious viscosity 
is removed. (See Wehausen and Laitone [10], p. 479). The problem could have been formulated using the 
Navier-Stokes equations and modified boundary conditions similar to Miles' treatment of the Cauchy- 
Poisson problem [11]. A treatment of this sort would be more satisfactory from a physical standpoint. 
Either way, one obtains the same result after suppressing the viscosity. The introduction of a weak internal 
damping mechanism is not uncommon in other areas of classical physics. For example, the author in Refer- 
ence [12] has applied Voigt viscoelasticity to the problem of acoustic reflection from a solid halfspace. The 
dissipative mechanism facilitated the interpretation of a spatial Fourier integral form. 
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As one is concerned only with the steady state response, the time dependence of the ve- 
locity potential and surface elevation will be of the same form as the applied pressure given 
in equation (7). In this case the time differentiation indicated in the boundary conditions re- 
duces to multiplication by - i a .  

The transformed surface elevation may then be expressed as follows from equations (3) 
and (11): 

i lkl  A ( k ,  t) 
~'(k, t) - (12) 

a + k c  

One solves for the potential function A ( k ,  t) by substituting (11) and (7) into the trans- 
formed form of the combined free surface boundary condition (5), giving as a result 

e - ~ t  i ( kc  + a) 
A(k, t) - . (13) 

P {(Ikl g - #2/4 - (~r + k c  + i#/2) 2} 

From (12) and (13), the transformed surface elevation is: 

e -~'~, - I k l  
~'(k, t) = - -  . (14) 

p { I k l . q  - # = / 4  - (o- + kc + i#/2) z} 

To eliminate the absolute signs in equation (14) one may break the integral form (10) into 
two regions, one along the negative real axis and the other along the positive real axis. 
After some manipulation the following result is obtained: 

__e-i't{f; e**~kdk f o e  -*~xkdk } _  , 
~(x, t) = 2rip D t ( k  , 6, c) + D2(k ,  a, c) (15) 

where 

D 1 = (a + kc)  2 + i#(a + kc )  - k g  

and 

D 2 = (~r - kc )  2 + i#(a - kc)  - kg .  

3. Evaluation of integrals by contour integration 

To evaluate the integrals in equation (15) one must first determine the nature of the singu- 
larities of the integrands. No branch point singularities are evident, but the two denomi- 
nators Dt and D z each have two distinct zeros corresponding to simple pole singularities. 
The second denominator may be written as follows: 

D2(k  , 6, c) = c2(k  - K 0 ( k  - K2), 

where 

I<,  = K o ( 2  + ~ - 2 , / 1  + ~), 

K o = g/(4C2), ~ = ~o(1 + is), 

K 2 = Ko(2 + ~ + 2`/1 + c0, 

4co- 
~o - , s = #/(2cr). 

g 

(16) 

The damping is taken to be small, so ~ ~ 1. 
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k" k : k'+ik" 

% 0  "'l % : o  2 

, , Ko 21~ o 4 

(a) 

2K o . _ 

a~ ~ ~  I 

-2Kc Y 
ao:2 

k = k'+ ik" 

2Ko .~o 
I ~ 1 ~ (b) 

I K 4 

Figure 2. Migration of poles in complex wavenumber plane as frequency parameter C~o increases 
(a) Migration cf K~ and Kz ; (b) Migration cf K3 and K.. 

The migrations of  K 1 and K2 as the frequency parameter % increases are shown in Fig. 

2a. One sees that both poles remain near the real axis for all values of  %. 
One may write for the first denominator:  

Dl(k ,  a, c) = c2(k - K3)(k  - K , ) ,  

where 

K3 = Ko(2 - cz - 2x/1 - ~), K4 = Ko(2 - ~ + 2x/1 - cz). 

(17) 

The migration of these poles as ao increases is shown in Fig. 2b. The poles remain near the 

real axis until ao approaches unity, at which point both poles begin to move away from the 
real axis. 

The expression for the wave elevation may be simplified by substituting (16) and (17) into 
(15) and applying a partial fraction expansion to each term. The resulting expression for the 
surface elevation is 
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where 

K2 e -i~t K1 i i ( x  ' K1 ) + _ _  i2(x  ' K2 ) 
~ ( x ,  t) - 2~zpg x / ~  x/1 + ~  

K3 I3(x, Ka) + - - I 4 ( x ,  K4) , (18) 

f o e - i k x  [* ~ e - i k x  

dk, I2(x' K2) = J 0  dk, I I ( x ' K 1 )  = k - K1 k - K 2 

f O eikX f O eikX 
- -  dk, I4(x, K4) = - -  dk. 

I3(x, K3) = k - K 3 k - K 4 

The problem now reduces to evaluation of the improper integrals I1, Iz, 13, and 14 given 
in (18). At this point the artificial internal dissipation may be eliminated by setting the 
Stokes viscosity coefficient # to zero. The dissipation was introduced to determine in which 
quadrant the poles K~, K2, K3, and K4 lie. When the Stokes viscosity # is set to zero the 
nondimensional frequency parameter c~ in equation (16) becomes real: 

4trc 
= ao - (19) 

g 

The poles K3 and K4 now lie on the real axis for c~ < 1 and K1 and Kz are real for all e. 
For c~ > 1, the complex poles Ka and K 4 may be expressed in exponential form as follows: 

K3 = ~Ko ei~', K4 = eKoe -~~ (e > 1), (20) 

where 

~' = tan-1 2 - - - ~ z  " 

The paths of integration for the improper integrals in (18) must be reinterpreted when the 
artifical dissipation is eliminated. The K~ and K2 poles for all values of a and the K a and 
K 4 poles for e __< 1 now lie on the real axis, so the paths must be indented. Each path is 
idented so that the pole lies on the same side of the integration path as it did when dissi- 
pation was present. The expressions for the integrals may be written as follows for the non- 
dissipative medium: 

f r e -  ikx 
I i (x '  Ka) = ~ k Z K 1 dk, f r e - ikx 

I2(x, K2) = z k Z K2 dk, 

f F elkX f F eikX 
I3(x' g3)  = a k - K~  dk, I4(x, K4) = 4 k - g ~  dk, (21) 

where the paths F1, if2, F3, and F 4 are now in the complex k-plane as indicated in Fig. 3. 
The following symmetries exist between the integrals in equation (21). These follow from 

the paths shown in Fig. 3 and equation (21). 

I2(x, K) = I i (x ,  K),  Ia(x, K) = I i ( - x ,  K), I4(x, K) = I ~ ( - x ,  K), (22) 
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K I 
O "  ,,z, . Fi (a) 

127 

K 2 
o .  ,v  ,-I" 2 (b) 

K 3 
O" ~ --- F 3 (c) 

o :  K I  -- F4  (d) 

K 3 

K 4 

Figure 3. Integration paths in complex wavenumber plane for dissipationless liquid 
(a) Path for I~ ; (b) Path for/2; (c) Path for/3, a < 1 ; (d) Path for/ , ,  a < 1 ; (e) Path for I3 and/4 for 
c~>l. 

where the asterisk denotes a complex conjugate and K is real. The symmetry relations re- 
duce the number of integrations from eight to two. 

One starts by integrating I1, as given in equation (21). The behavior of the exponential 
term is exploited. One notes that for positive x the exponential of the integrand for I~ has 
a negative real part in the lower half of the complex k plane. For x > 0, 11 is evaluated by 
closing a contour in the fourth quadrant as shown in Fig. 4a. The pole K~ is excluded from 
the contour because of the indentation. After applying Cauchy's integral theorem around 
the closed contour, one has 

+ fo  e-~k~dk I~ _,~ ~ - K~ - 0, (23) 

where the superscript plus sign denotes the solution on the positive x axis. After some 
manipulation, the integral I~- may be expressed in terms of auxiliary exponential integrals 
[13] as follows: 

I~ (x, K1) = g(Klx ) + if(Klx ). (24) 
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k I! 

I 
(b) 

o - -~ .L ,  ~ ~ k '  

Figure 4. Integration contours in complex wavenumber plane for/1 
(a) Contour for I~- ; (b) Contour for I~-. 

One evaluates I 1 for x < 0 (denoted I~-) in a similar fashion. The contour is closed in 
the first quadrant as shown in Fig. 4b. Noting that the pole is now inside the contour, one 
may apply Cauchy's residue theorem, giving 

f o e-i~Xdk 
I-~ + oo k ~--~, - 2~ie-~Klx" (25) 

After similar manipulation, the expression for I~- reduces to 

I-~(x, K 0 = g ( - K l x )  + i[2rce -~K'x - f ( - K l x ) ] ,  x < 0. (26) 

Because of symmetry (22), the expressions for I + and I z may be obtained from (24) and 
(26) by substituting K2 for K 1. 

The second symmetry relation (22) is exploited to obtain the following expressions for 
I + a n d 1 3 f o r ~ _ - <  1: 

I~ (x, K3) = g(Kax ) - i[f(K3x ) - 2~ze/K3x] (27) 

and 

I~ (x, K3) = g ( -  K3x) + i f ( -  K3x). (28) 
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Finally, the third symmetry relation is used to evaluate I~ and 14 for ~ __< 1 : 

I~ (x, K4) = g(K4x ) - if(K4x ) 

and 

I 4 ( X ,  K 4 )  = 9 ( - K 4 x )  + i [ f ( - K 4 x )  - 2zeir4x]. 

(29) 

(30) 

To evaluate 13 and 14 for c~ > 1 the locations of the complex poles K3 and K 4 must be 
taken into account. From Figs. 2b and 3e and equation (20) one sees that K3 lies in the 
upper half plane and K 4 in the lower half plane. Both poles lie in the right half plane for 

< 2 and in the left half plane for cr > 2. 
For  ~ < 2 the expressions for 13 and 14 given in (27), (28), (29) and (30) apply because 

the poles still lie in the same quadrants as they did for c~ < 1. However, the arguments of 
the auxiliary exponential integrals become complex and the behavior of the residue terms 
changes because the poles K3 and K4 are complex. The residue terms in equations (27) and 
(30) for 1~ and 14, instead of representing unattenuated surface waves, now have expo- 
nential attenuation as one moves away from the disturbance. 

For ~ > 2 the K 3 and K 4 poles both lie in the left half plane. No residue terms occur in 
this case, as neither pole lies inside the integration contour. Therefore, both I 3 and 14 con- 
sist solely of  auxiliary exponential integral terms with complex arguments. Equations (27) 
and (30) still apply if the residue terms are dropped in the expressions for I~ and I~-. 

4. Mean work rate and radiation of  energy into the far field 

The rate at which energy is carried away from the pressure disturbance by the free wave 

system is of importance because of its association with the work done by the pressure on 
the  fluid in the near field. In the far field the disturbance consists of four surface waves for 
0 < e < 1 and two for ~ > 1. The energy efflux may be written following Lamb [14], as: 

4 
" 7 -  

WOUT = ~ c~E,, (31) 
n = l  

where WOUT is the mean energy efftux through the boundary of a control volume moving 
with the disturbance, co. is the group velocity of the nth wave in the moving coordinate 
system and E, is the mean energy per unit surface area. In equation (31) the relative group 
velocity is taken as positive when directed away from the disturbance. Calculating the 
group velocities from the wavenumber expressions (16) and (17) gives the following" 

-cx / t  + ~ -c~/1 + 
c G 1 -  ~ / 1 + ~ - 1 '  c G 2 -  1 + ~ / 1  + ~ '  

c~/1 - ~ -c~/1  - c~ 
- -  , CG4 - -  , (0~ ~ 1). 

eta 1--  x /1 - -  ~ 1 + ~/1--  o~ 

(32) 

The mean energy for each wave may be expressed as follows: 

1 2 E, = ~pgA,,, (33) 
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where the amplitudes of the waves A 1, A2, A3 and A 4 are taken from (26), (27), (30) and 
(18). Substituting the group velocities (32) and the energies (33) into the work rate expres- 
sion (31) gives the following: 

WouT = 2p-~f(~) ,  (34) 

where f(a) = fl(~) + f2(~) and 

+(4) f , (a)  = 1 + , 

f 2 ( ~ )  = [ ( � 8 9  ~ _ < 1  

~ / 1  - -  ~ 

0, ~ >  1. 

The normalized work rate function f(a) is shown in Fig. 5. One sees the familiar resonance 
at a = 1. The resonance occurs because the work performed by the pressure distribution on 
the fluid creates energy that cannot propagate away from the disturbance. This follows 
from equation (32) where one sees that the relative group velocities of the third and fourth 
waves are zero for a = 1. The expressions for the group velocities (32) and the mean work 
rate (34) are consistent with Wu's [5] results. 

A 

v 

1.5 

1.0 

0.5 

t I I I l I I 

J 
J 

J 
J 

J 
J 

J 

0 I I [ I 1 I [ I [ 

0 I 2 3 4 5 
FREQUENCY PARAMETER (a}  

F i g u r e  5. N o r m a l i z e d  m e a n  w o r k  r a t e  f u n c t i o n  f ( = )  as  a f u n c t i o n  o f  the  f r e q u e n c y  p a r a m e t e r  ~. 
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5. The surface elevation for the uniform pressure distribution 

The surface elevation Z(x,  t) due to a uniform pressure distribution was computed from 
~(x, t) using the superposition integral (8). The surface elevation caused by the delta func- 
tion distribution ~(x, t) was obtained from (18), (24), (26), (22) and (27)-(30). One may 
write the uniform pressure distribution as 

= [Po,  [xl < l/2 
p(x) ~ O, Ixl > l/2. (35) 

The results are expressed in nondimensional form as follows" 

Z 
z' = = (a + ib)e -~' ,  (36) 

Po/Pg 

where z' is the normalized wave elevation, a is the component in phase with the pressure 
and b is the out of phase component. Expressions for the in and out of  phase components 
for ~ < 1 are given in the Appendix. The two components of the wave elevation are func- 
tions of the normalized frequency ~ and the Froude number 

F = e/(gl) ~. 

Numerical results for F = 0.7 are shown in Figs. 6, 7, and 8 for three frequencies: c~ = 0, 
0.5 and 0.95. In each figure the normalized in phase (a) and out of phase component (b) 
are plotted as a function of the nondimensional distance x'  = x/l. Fig. 5 shows the in 
phase component of the wave elevation for the zero frequency case. (The out of phase com- 
ponent is zero.) The near field disturbance resembles the wake produced by a planing sur- 
face. The standing wave in the far field downstream is evident. Figs. 6 and 7 show the in 
phase and out of phase components of the wave elevation for c~ = 0.5 and 0.95, respectively. 
One can see interference between the various waves in the far field downstream for both 
frequencies. In addition, a long wave appears upstream for c~ = 0.95, but is not apparent 
f o r ~  = 0.5. 

0 

4 

- 4  

Figure  6. Norma l i zed  wave e levat ion for  F = 0.7 and  ~ = 0. 

2 
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Cl 

4 

L/-4 
(0 -4  

b 

4 

-I  

(b) - 4  
Figure  7. Normal ized  wave elevation for F = 0.7 and  ~ = 0.5 

(a) In  phase  c o m p o n e n t ;  (b) Out  of  phase  componen t .  

~ I X t 

2 

I I X I 

2 

To clarify the behavior of the waves in the far field, Table 1 has been prepared. The ratio 
of wavelength to pressure distribution length (2/l) has been calculated for each wave at all 
three frequencies using the wavenumber expressions (16) and (17). One sees from the table 
that the second and fourth wave have the same wavelength and form a standing wave for 

= 0, because one wave travels to the right and the other to the left. The first and third 
waves have infinite wavelength, but their amplitudes are zero. 

For  nonzero frequencies, the length of the second wave is shorter than the fourth. This 
causes the interference pattern in the downstream wake. The third wave occurs upstream. 
Its amplitude is too small to appear in Fig. 6, but it is evident in Fig. 7. The wave is so long 
at ~ = 0.95 that only about half a cycle of  the wave appears in the figure. 

T A B L E  1 

Wavelengths in far field produced by uniform pressure distribution 

0 c~ 3.08 c~ 3.08 
0.5 244 2.49 144 4.23 
0.95 78.3 2.14 20.4 4.93 
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I I ! 
4 B 

4 

- B 

Figure 8. Normalized wave elevation for F = 0.7 and ~ = 0.95 
(a) In phase component; (b) Out of phase component. 

' x '  (a) 

, x' (b) 

6.  R e c a p i t u l a t i o n  o f  resu l t s  

The steady state surface elevation is expressed in (18) as the sum of four integral terms, 
each having a simple pole singularity in the complex wavenumber plane. The location of 
the poles is shown in Fig. 2. When the Stokes viscosity is suppressed all the poles lie on the 
positive real axis for low frequencies (~ < 1). At higher frequencies (a > 1) only the first 
two lie on the real axis. The integration paths are indented as shown in Fig. 3 so that the 
poles lie on the same side of the path as they did with Stokes viscosity. Each integral term 
is then interpreted as a path integral in the complex wavenumber space as indicated in equa- 
tion (21). To reduce the number of integrations, three symmetry relations that follow from 
the integral forms and the integration paths are introduced. 

The first integral form is evaluated by selecting appropriate closed contours for the posi- 
tive and negative x-axis, as shown in Fig. 4, and applying Cauchy's residue theorem. The 
integral is expressed in discontinuous form in equations (24) and (26). The integral con- 
sists partially of auxiliary exponential integrals which are known tabulated functions. 

In addition a residue term appears on the negative x-axis or the downstream side. This 
term is an exponential and it represents the familiar undamped surface wave. The other 
three integrals are written from the first result using the symmetry relations. 
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The surface elevation is seen to consist of exponential integral terms contributing to the 
near field and exponentials appearing on only one side of the disturbance. The exponential 
terms are the free waves and are associated with the residues of each pole. For low fre- 
quencies (c~ < 1) three waves appear downstream and one upstream, as has been noted by 
previous investigators. [3, 4, 5] 

At the higher frequencies two of the poles leave the real axis. The exponential integral 
terms in the solution remain the same, except that their arguments become complex in- 
stead of real. The residue terms persist until c~ = 2, at which point the poles leave the inte- 
gration contour. For 1 < c~ < 2 the residue terms decay exponentially with distance and, 
therefore, do not contribute to the far field solution. 

The mean rate at which energy propagates away from the disturbance was computed. 

The result, which agrees with Wu [5], is given in equation (34), and is shown in Fig. 5. 
The surface elevation was calculated for a uniform pressure distribution. This was done 

to eliminate the logarithmic singularities that appear in the solution for the delta function 
distribution. Expressions for the normalized in phase and out of phase components of the 
surface elevation are given in the appendix for the low frequency case. Numerical results 
are presented in Figs. 6, 7, and 8 for a Froude number of 0.7 and e = 0, 0.5, and 0.95, re- 
spectively. The zero frequency result (e = 0) shows that the water surface deforms like that 
of a planing surface in the near field, while standing waves are apparent in the far field. For 
the nonzero frequencies (e = 0.5 and 0.95) interference occurs in the waves downstream. 

In addition, a long wave occurs upstream for c~ = 0.95. 
The lengths of the various waves were calculated for the three frequencies. The results 

are shown in the table. The zero frequency standing wave is shown to consist of two down- 
stream waves, each having the same wavelength and traveling in opposite directions. The 
interference pattern in the downstream wave pattern for nonzero frequency is caused pri- 
marily by the same two waves, whose wavelengths now differ. A long wave appears up- 

stream as one approaches the critical frequency. 
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Appendix: Expressions for in phase and out of phase components of surface elevation for uni- 
form pressure distribution 

The normalized in phase componen t  o f  the surface elevation is given as a(F, ~) and the out  

o f  phase componen t  as b(F, ~). Each componen t  consists o f  four  parts corresponding to 

the four  poles K1, K2, Ks and K 4. One may  write for  a and b: 

4 
a =  32ai  

f=l 

and 

4 
b = Z b ~ .  

i=l 

As a result o f  the discontinuous representation o f  the surface elvation ((x, t), the super- 

posit ion integration (8) must  be performed in three regions:  1) upstream (x'  > �89 2) under  

the pressure distribution (Ix'l _-< �89 and 3) downstream (x'  < - �89 

The arguments  for  the exponential  integral and exponential terms are given in nondimen-  
sional form. First, the wavenumbers  are normalized as follows: 

~(~) = Ki/Ko, i = 1, 2, 3, 4. 

The speed is expressed in terms of  the Froude  number  F = c/(9l) ~, and the normalized 
longitudinal distance as x '  = x/L 

For  convenience, one may  set 

x ' +  �89 x '  
L I - -  4F 2 , X -  4F2,  
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x ' -  �89 1 
L 2 -  4 F  2 , G - 8 F 2 ,  

1 X t 

L 3  _ 2 
4F2 ' 

- ( x '  + 3) 
L 4 - -  4 F  2 

The components  of  the surface elevation are listed as follows: 

1. x '  > �89 (upstream),  c~ < 1 

a l  - 

2 ~ / 1  
{f(~'iLi) - f(~iL2)}, 

+c~ 

a2 m 
2~4] 

{ - f ( ' ~ 2 L 1 )  + f ( ]~2L2)} ,  

a3 - 
2 ~ 1  

_ _  { f ( y 3 L 1 )  - f ( 'Y3Z2)  -[- 4rc sin(TaX) sin 73G}, 

a4  - 2, 41 
{ - f ( ? 4 L 1 )  + f ( y 4 L 2 ) } ,  

h i  - 
- 1  

2=x/1 + 
, - -  {g(?lL1) - g(? lL2)  + ln(T1L1) - ln(T1L2)}, 

1 
b2 / 

2~zx/1 + 
{g(]~2L1) - -  g ( y z L 2 )  + ln(?2L1) -- ln(?2L2)}, 

b3 m 
2r~x/1 - c~ 

{ g ( F 3 L 1 )  - -  g ( y a L 2 )  + l n ( ? 3 L i )  - l n ( 7 3 L 2 )  

- 4re cos(73 X) sin(?3G)}, 

- 1  
b4 = / {g(~4L1) - g(?4L2) + ln(74L1) - ln(?4L2) }. 

2=x/1 - c~ 

2. Ix'l ~ �89 (under pressure distribution),  e < 1 

a l  m 
2r~,,/1 + 

{TZ + f ( Y l L 3 )  + f ( ? lL1)  - 2re c o s ( ] ~ I L 3 ) } ,  

a2  - 
- 1  

2rcx/1 + c~ 
{g  + f ( ]~2L3)  -Jr- f ( ]~2L1)  - 2re co s ( ] J2L3)} ,  

1 
a3 

2rrx/1 - 
{re + f(TaLa) + f ( y 3 L 1 )  + -2 re  cos (?aL0}  , 
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a 4 - 

- 1  

2rex/1 - 
{~z + f ( y , L z )  - f (y4La)  - 2z  cos(y4L3)},  

- 1  
b~ 2~z'--x/l+e {g (y lL*)  - g(7~L3) + ln (~*LO - l n ( ~ L 3 )  + 2~z s in(7;L3)},  

1 
- {g (~zL; )  - g(y2L3) + ln (72L; )  - ln(y2L2) + 2re s in(yzLa)},  

- 1  
- {g(%L3)  - g(y3L1) + ln(y3L3) - l n (y3L , )  + 2re sin(yaL1)},  b3 2~zx/1 - 

1 
b4 - -  / :  {g('f4L3) -- g(yaL1)  + ln(y4L3) - l n (y ,  L4) - 2zc s in(?4L4) }. 

3. x '  __< - � 8 9  (downs t ream) ,  ~ < 1 

a t  

- 1  

2x-,/1 + c~ 
_ _  { f ( y t L 4 )  - f ( v l L 3 )  + 4re s in (y ,X)  s in(? ,G)},  

a 2  - 
2rex/i- + 

- -  { f ( T z L , )  - f (22L3)  + 4~z s in(y2X) sin(Y2G)}, 

- 1  
- -  ( f ( T 3 L 4 )  - -  f ( y 4 L 3 ) } ,  

a3 2ztx/1 - 

1 
- _ / 7  {f(y4L4)  - f (y4L3)  + 47r sin ('g4 X)  sin (~/4G)}, a 4  

h i  - 
- 1  

2rex/1 + c~ 
, - -  [g(y~L4) -- g(7 ,L3)  + ln(y~L4) - ln (2 ,L3)  

+ 4re c o s ( ? t X )  s in(giG)] ,  

b2 - - -  
2rex/1 + 

[ q ( 3 ~ 2 L 4 )  - g ( T z L 3 )  + l n ( y 2 L 4 )  - l n ( y 2 L 3 )  

+ 4~z cOS(TzX) sin(yzG)],  

b3 - - -  
2rex/1 - 

. - -  [ g ( ? 3 L 4 )  - -  g ( T 3 L 3 )  + ln(y3L4)  - [ n ( Y 3 L 3 ) ] ,  

b 4  - 

- 1  

2 n x / ;  --  
- -  [g(v4L4) - g(y4L3) + ln(y3L4)  - ln(v4L3) 

+ 4re cos (y4X) sin (74G)]. 
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